Summer Sale Limited Time 65% Discount Offer - Ends in 0d 00h 00m 00s - Coupon code: pass65

Exam MLS-C01 All Questions
Exam MLS-C01 All Questions

View all questions & answers for the MLS-C01 exam

Amazon Web Services AWS Certified Specialty MLS-C01 Question # 34 Topic 4 Discussion

MLS-C01 Exam Topic 4 Question 34 Discussion:
Question #: 34
Topic #: 4

An ecommerce company has developed a XGBoost model in Amazon SageMaker to predict whether a customer will return a purchased item. The dataset is imbalanced. Only 5% of customers return items

A data scientist must find the hyperparameters to capture as many instances of returned items as possible. The company has a small budget for compute.

How should the data scientist meet these requirements MOST cost-effectively?


A.

Tune all possible hyperparameters by using automatic model tuning (AMT). Optimize on {"HyperParameterTuningJobObjective": {"MetricName": "validation:accuracy", "Type": "Maximize"}}


B.

Tune the csv_weight hyperparameter and the scale_pos_weight hyperparameter by using automatic model tuning (AMT). Optimize on {"HyperParameterTuningJobObjective": {"MetricName": "validation:f1", "Type": "Maximize"}}.


C.

Tune all possible hyperparameters by using automatic model tuning (AMT). Optimize on {"HyperParameterTuningJobObjective": {"MetricName": "validation:f1", "Type": "Maximize"}}.


D.

Tune the csv_weight hyperparameter and the scale_pos_weight hyperparameter by using automatic model tuning (AMT). Optimize on {"HyperParameterTuningJobObjective": {"MetricName": "validation:f1", "Type": "Minimize"}).


Get Premium MLS-C01 Questions

Contribute your Thoughts:


Chosen Answer:
This is a voting comment (?). It is better to Upvote an existing comment if you don't have anything to add.